Structure of 4-Ethylcoumarin

By S. García-Granda* and M. R. Díaz
Departamento de Química Fisica y Analítica, Facultad de Química, Universidad de Oviedo, Julián Clavería No. 833006 , Oviedo, Spain .
and D. Moreiras-Blanco and C. Marcos-Pascual
Departamento de Geologia, Facultad de Geología, Universidad de Oviedo, Jesús Arias de Velasco s/n 33005, Oviedo, Spain

(Received 19 June 1991; accepted 7 January 1992)

Abstract

Ethyl-2 H -1-benzopyran-2-one, $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{2}$, $M_{r}=174.20$, triclinic, $\quad P \overline{1}, \quad a=8.854$ (2), $\quad b=$ 7.677 (2), $\quad c=7.061$ (2) $\AA, \quad \alpha=107.91$ (3), $\quad \beta=$ 77.25 (3) $, \quad \gamma=101.40(2)^{\circ}, \quad V=441.0$ (2) $\AA^{3}, \quad Z=2$, $D_{x}=1.31 \mathrm{Mg} \mathrm{m}^{-3}$, Mo $K \alpha$ radiation (graphitecrystal monochromator), $\quad \lambda=0.71073 \AA, \quad \mu=$ $0.084 \mathrm{~mm}^{-1}, F(000)=184, T=293 \mathrm{~K}$, final conventional $R=0.044$ for 1196 observed reflections and 158 variables. The complete molecule is essentially planar with a slight deviation for the ethyl group. The torsion angles $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(41)-\mathrm{C}(42)$ and $\mathrm{C}(10)-\mathrm{C}(4)-\mathrm{C}(41)-\mathrm{C}(42)$ are $-1.5(3)$ and $179.0(2)^{\circ}$, respectively.

Experimental. Data were collected with a colourless crystal, $0.33 \times 0.20 \times 0.10 \mathrm{~mm}$, using an EnrafNonius CAD-4 single-crystal diffractometer with Mo $K \alpha$ radiation (graphite-crystal monochromated). Unit-cell dimensions were determined from the angular settings of 25 reflections with $0<\theta<15^{\circ}$. Space group $P \overline{1}$ was derived from the structure determination. 5106 reflections were measured ($h-12 \rightarrow 12, k$ $-10 \rightarrow 10, l-9 \rightarrow 9 ; 0<\theta<30^{\circ}$), using $\omega-2 \theta$ scan technique with a variable scan speed and a maximum scan time of 60 s per reflection. Intensity was checked by monitoring three standard reflections every 60 min . Final drift corrections were between 0.97 and 1.35 . On all reflections, profile analysis was performed (Lehmann \& Larsen, 1974; Grant \& Gabe, 1978); empirical absorption correction was applied using ψ scans (North, Phillips \& Mathews, 1968), correction factors ranging from 0.69 to 0.99 . Friedel pairs were averaged, $R_{\text {int }}=(I-\langle I\rangle) / \Sigma I=$ 0.022 ; 2553 reflections were unique and 1196 observed with $I>3 \sigma(I)$. Lorentz and polarization corrections were applied and data reduced to $\left|F_{o}\right|$ values. The structure was solved by direct methods using the program SHELXS86 (Sheldrick, 1985) and

[^0]0108-2701/92/081513-02\$06.00

Fourier synthesis. Isotropic least-squares refinement, using SHELX76 (Sheldrick, 1976), converged to $R=$ 0.108. At this stage an additional empirical absorption correction was applied (Walker \& Stuart, 1983), resulting in a further decrease of R to 0.086 . The maximum and minimum absorption correction factors were 1.18 and 0.82 , respectively. Further anisotropic refinements followed by a difference Fourier synthesis allowed location of all the H atoms.

Positional parameters and anisotropic thermal parameters of the non-H atoms were refined. All H atoms were refined isotropically with individual thermal parameters. The final conventional agreement factors were $R=0.044$ and $w R=0.047$ for the 1196 observed reflections and 158 variables. The function minimized was $\sum w\left(F_{o}-F_{c}\right)^{2}, w=1 /\left[\sigma^{2}\left(F_{o}\right)+\right.$ $0.00040 F_{o}{ }^{2}$] with $\sigma\left(F_{o}\right)$ from counting statistics. The maximum shift to e.s.d. ratio in the last full-matrix least-squares cycle was less than 0.02 . The final difference Fourier map showed no peaks higher than 0.15 or deeper than $-0.21 \mathrm{e} \AA^{-3}$. Atomic scattering factors were taken from International Tables for X-ray Crystallography (1974, Vol. IV). Fig. 1. was made with PLUTO (Motherwell, 1976). Geometrical calculations were made with PARST (Nardelli, 1983). All calculations were made on a MicroVAX 3300 computer at the Scientific Computer Center of the University of Oviedo.

Fig. 1. PLUTO (Motherwell, 1976) diagram showing a view of the molecule and the atomic numbering scheme.
© 1992 International Union of Crystallography

Table 1. Fractional positional parameters and equivalent isotropic thermal parameters $\left(\AA^{2} \times 10^{2}\right)$ with

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}{ }^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
C(10)	-0.0264 (2)	0.5384 (2)	0.2673 (2)	3.85 (6)
C(9)	-0.0570 (2)	0.3455 (2)	0.2038 (3)	4.23 (6)
O(1)	0.0623 (1)	0.2387 (2)	0.1403 (2)	5.45 (5)
C(4)	0.1357 (2)	0.6262 (2)	0.2646 (2)	3.75 (6)
C(5)	-0.1560 (2)	0.6354 (3)	0.3287 (3)	4.80 (7)
C(3)	0.2482 (2)	0.5166 (2)	0.1974 (3)	4.79 (7)
C(8)	-0.2076 (2)	0.2508 (3)	0.1973 (3)	5.24 (8)
C(7)	-0.3311 (2)	0.3510 (3)	0.2567 (3)	5.90 (8)
O(21)	0.3136 (2)	0.2130 (2)	0.0663 (3)	8.11 (8)
C(41)	0.1696 (2)	0.8341 (2)	0.3348 (3)	4.45 (7)
C(6)	-0.3066 (2)	0.5428 (3)	0.3228 (3)	5.74 (8)
C(2)	0.2167 (2)	0.3170 (3)	0.1298 (3)	5.36 (8)
C(42)	0.3415 (2)	0.9132 (3)	0.3299 (4)	4.97 (9)

Table 1 presents fractional positional and thermal parameters and Table 2 lists bond distances and angles.*

Related literature. The structure of the title compound has been determined in the course of studies on the behaviour of 3-bromocoumarin derivatives reacting with organometallic compounds (Alberola, Calvo, González-Ortega, Vicente, Garcia-Granda \& van der Maelen, 1991). The complete molecule is essentially planar with a slight deviation for the ethyl group.

[^1]Table 2. Bond lengths (\AA) and bond angles (${ }^{\circ}$) with e.s.d.'s in parentheses

$\mathrm{C}(10)-\mathrm{C}(9)$	$1.398(2)$	$\mathrm{C}(10)-\mathrm{C}(4)$	$1.459(2)$
$\mathrm{C}(10)-\mathrm{C}(5)$	$1.407(2)$	$\mathrm{C}(9)-\mathrm{O}(1)$	$1.377(2)$
$\mathrm{C}(9)-\mathrm{C}(8)$	$1.390(2)$	$\mathrm{O}(1)-\mathrm{C}(2)$	$1.376(2)$
$\mathrm{C}(4)-\mathrm{C}(3)$	$1.343(2)$	$\mathrm{C}(4)-\mathrm{C}(41)$	$1.507(2)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.385(3)$	$\mathrm{C}(3)-\mathrm{C}(2)$	$1.446(2)$
$\mathrm{C}(8)-\mathrm{C}(7)$	$1.377(3)$	$\mathrm{C}(7)-\mathrm{C}(6)$	$1.389(3)$
$\mathrm{O}(21)-\mathrm{C}(2)$	$1.207(2)$	$\mathrm{C}(41)-\mathrm{C}(42)$	$1.520(3)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(4)$	$118.7(2)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(5)$	$117.1(2)$
$\mathrm{C}(4)-\mathrm{C}(10)-\mathrm{C}(5)$	$124.2(2)$	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{O}(1)$	$121.3(1)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$122.4(2)$	$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	$116.3(2)$
$\mathrm{C}(9)-\mathrm{O}(1)-\mathrm{C}(2)$	$121.6(1)$	$\mathrm{C}(10)-\mathrm{C}(4)-\mathrm{C}(3)$	$117.9(2)$
$\mathrm{C}(10)-\mathrm{C}(4)-\mathrm{C}(41)$	$119.0(2)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(41)$	$123.1(2)$
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(6)$	$121.1(2)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$123.5(2)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	$118.7(2)$	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	$120.9(2)$
$\mathrm{C}(4)-\mathrm{C}(41)-\mathrm{C}(42)$	$115.3(2)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$119.8(2)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$117.1(2)$	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{O}(21)$	$117.1(2)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(21)$	$125.9(2)$		

We thank Professor A. González-Ortega, Organic Chemistry (Valladolid), for providing us with the crystals and for helpful discussions.

References

Alberola, A., Calvo, B., GonZález-Ortega, A., Vicente, M., García-Granda, S. \& van der Maelen, J. F. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 203-210.
Grant, D. F. \& Gabe, E. J. (1978). J. Appl. Cryst. 11, 114-120.
Lehmann, M. S. \& Larsen, F. K. (1974). Acta Cryst. A30, 580-584.
Motherwell, W. D. S. (1976). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England. Nardelli, M. (1983). Comput. Chem. 7, 95-98.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1985). SHELXS86. In Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford Univ. Press.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1992). C48, 1514-1516

Structure of 3-Benzyloxy-5-(benzyloxymethyl)-5H-furan-2-one

By Anthony Linden
Institute for Organic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland

(Received 27 August 1991; accepted 7 January 1992)

0108-2701/92/081514-03\$06.00
mated), $\lambda=0.71069 \AA, \mu=0.819 \mathrm{~cm}^{-1}, \quad F(000)=$ $656, T=295(1) \mathrm{K}, 2269$ unique reflections, 1445 with $I>2 \sigma(I)$, final $R=0.069(w R=0.065)$. The side chains are arranged to give the molecule an (C) 1992 International Union of Crystallography

[^0]: * Author to whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters, distances and angles involving H atoms, least-squares-planes data and principal torsion angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55017 (23 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

